Plasma acetylated α-tubulin expression as an indicator of antidepressant effectiveness

McDonnell CW1, Prendervill JA1, Rouine J1, Di Capua G1, O’Driscoll D1,2, McKenna JP3, McCrery C3, Downer EJ2, Bianchi M1

1 Transpharmation Ireland Limited, Dublin, Ireland. 2 Department of Physiology, Trinity College Dublin, Dublin, Ireland. 3 Cork University Dental School and Hospital, University College Cork, Cork, Ireland.

INTRODUCTION

- Microtubules are the primary component of the cytoskeleton.
- Alteration in the expression of microtubular proteins associated with microtubule dynamics and neuronal plasticity has been linked with the pathogenesis and treatment of major depressive disorder (MDD) [1].
- Acetylated α-Tubulin (Acet-Tub) is associated with less dynamic microtubules and was found to be increased in the hippocampus in a rat model of depression and rescued by antidepressant treatment [2].
- Burning Mouth Syndrome (BMS) is a neuropathic pain disorder having high comorbidity with MDD.

Aim: To explore the feasibility of plasma Acet-Tub as an indicator of antidepressant effectiveness.

METHODS

Forced Swimming Test: Wistar rats (3-4 months:300-350g) were administered fluoxetine (10mg/kg, i.p.) 1h, 5h, and 24h, before forced swimming test (FST). FST was performed as previously described [3].

Rat Plasma: Wistar rats were sacrificed by decapitation and trunk blood was collected immediately following FST. Plasma was isolated from blood samples by centrifugation. Plasma samples were preserved using a protease inhibitor cocktail and stored at -80 °C. Samples were prepared with a protein concentration of 1 μg/μl.

Human Plasma: Venous blood was collected from 20 volunteers and plasma was aspirated following centrifugation. Samples were prepared with a protein concentration of 6 μg/μl.

Infrared Western Blotting (IFWB): The expression of plasma Acet-Tub was measured using a protocol of IFWB adapted from previous studies [3]. Acet-Tub detection in human plasma was optimised.

RESULTS

Figure 2. Fluoxetine Reduces Immobility in Forced Swimming Test

Wistar rats (n=10) showed reduced immobility in forced swimming test after receiving fluoxetine treatment 1h, 5h, and 24h pre-test vs vehicle (n=10)(∗p<0.05). Student’s t-test. Data: Mean ± SEM.

Figure 3. Fluoxetine Reduces Acet-Tub Expression in Rat Plasma

Wistar rats (n=8) show a reduction in Acet-Tub expression normalised to transferrin following fluoxetine treatment 1h, 5h, and 24h pre-test vs vehicle (n=7)(∗∗p<0.01). Student’s t-test. Data: Mean ± SEM.

Figure 4. Antidepressant lower plasma Acet-Tub expression in patients with burning mouth syndrome

Plasma from BMS patients receiving antidepressant treatment (n=4) showed reduced Acet-Tub expression normalised to transferrin, compared to health controls (n=10) and BMS patients not receiving antidepressants (n=6). One-way ANOVA. Data: Mean ± SEM.

CONCLUSION

- Fluoxetine administration has behavioural antidepressant efficacy in the forced swimming test in Wistar rats.
- In conjunction with rat behavioural data, Acet-Tub expression normalised to transferrin in rat plasma is reduced after receiving fluoxetine treatment.
- BMS patients receiving antidepressant treatment showed reduced Acet-Tub expression compared to those not receiving antidepressant treatment.
- Acet-Tub can be measured in human plasma and the first clinical data on a limited number of samples suggests the translational validity of Acet-Tub as an indicator of antidepressant efficacy.

REFERENCES